Experiments with Artificial Neural Networks for Phoneme and Word Recognition
نویسندگان
چکیده
An artificial neural network has been trained by the error back-propagation technique to recognise phonemes and words. The speech material was recorded by a male Swedish talker and was labelled by a phonetician. There were 38 output nodes corresponding to Swedish phonemes. Introducing coarticulation information by adding simple recurrency to the net is shown to more effective than expanding the size of the input spectral window. The phoneme recognition network was used with dynamic programming for time alignment to recognise connected digits in a speaker independent way. It was compared to a similar recogniser based on nine quasi-phonetic features instead of 38 phonemes. The phoneme based system performed better than the feature based one for five out of seven speakers.
منابع مشابه
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملNeural networks for text-to-speech phoneme recognition
This paper presents two different artificial neural network approaches for phoneme recognition for text-to-speech applications: Staged Backpropagation Neural Networks and SelfOrganizing Maps. Several current commercial approaches rely on an exhaustive dictionary approach for text-to-phoneme conversion. Applying neural networks for phoneme mapping for text-to-speech conversion creates a fast dis...
متن کاملRecurrent neural networks for phoneme recognition
This paper deals with recurrent neural networks of multilayer perceptron type which are well-suited for speech recognition, specially for phoneme recognition. The ability of these networks has been investigated by phoneme recognition experiments using a number of Japanese words uttered by a native male speaker in a quiet environment. Results of the experiments show that recognition rates achiev...
متن کاملContinuous Speech Phoneme Recognition Using Dynamic Artificial Neural Networks
Phoneme classification and recognition is the first step to large vocabulary continuous speech recognition. This step represents the acoustic modeling part of such a system. In hybrid speech recognition systems phoneme recognition is made by artificial neural networks (ANN’s). The main objective of this paper is the investigation of dynamic ANN’s, namely the Time-Delay Neural Networks (TDNN) an...
متن کاملPredictive neural networks applied to phoneme recognition
In this paper a phoneme recognition system based on predictive neural networks is proposed. Neural networks are used to predict observation vectors of speech frames. The obtained prediction error is used for phoneme recognition as 1) distortion measure on the frame level and 2) as feature, which is statistically modeled by the Rayleigh distribution. Continuous speech phoneme recognition experim...
متن کامل